To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias
نویسنده
چکیده
M-Bias,” as it is called in the epidemiologic literature, is the bias introduced by conditioning on a pretreatment covariate due to a particular “M-Structure” between two latent factors, an observed treatment, an outcome, and a “collider.” This potential source of bias, which can occur even when the treatment and the outcome are not confounded, has been a source of considerable controversy. We here present formulae for identifying under which circumstances biases are inflated or reduced. In particular, we show that the magnitude of M-Bias in linear structural equation models tends to be relatively small compared to confounding bias, suggesting that it is generally not a serious concern in many applied settings. These theoretical results are consistent with recent empirical findings from simulation studies. We also generalize the M-Bias setting (1) to allow for the correlation between the latent factors to be nonzero, and (2) to allow for the collider to be a confounder between the treatment and the outcome. These results demonstrate that mild deviations from the M-Structure tend to increase confounding bias more rapidly than M-Bias, suggesting that choosing to condition on any given covariate is generally the superior choice. As an application, we re-examine a controversial example between Professors Donald Rubin and Judea Pearl.
منابع مشابه
An Application of Non-response Bias Reduction Using Propensity Score Methods
In many statistical studies some units do not respond to a number or all of the questions. This situation causes a problem called non-response. Bias and variance inflation are two important consequences of non-response in surveys. Although increasing the sample size can prevented variance inflation, but cannot necessary adjust for the non-response bias. Therefore a number of methods ...
متن کاملSpatial Regression in the Presence of Misaligned data
In this paper, four approaches are presented to the problem of fitting a linear regression model in the presence of spatially misaligned data. These approaches are plug-in method, simulation, regression calibration and maximum likelihood. In the first two approaches, with modeling the correlation between the explanatory variable, prediction of explanatory variable is determined at sites...
متن کاملA Comparison of the Effectiveness of Cognitive Bias Modification in Real and Placebo Conditions on Attentional Bias and Approach Bias in Opium Abusers
Background & Aim: Inability to control drug use is considered a core aspect of drug dependency. Part of this inability is due to cognitive biases resulting from individuals’ constant usage of drugs. The aim of the present study was to compare the effectiveness of cognitive bias modification in real and placebo conditions on attentional bias and approach bias in opium abusers. Methods: This stud...
متن کاملInflation Bias, Time Inconsistency of Monetary and Fiscal Policies and Institutional Quality
In developing countries, weak institutional quality can increase the probability of applying discretionary policies and can have a great impact on their double-digit inflation. Surico (2008) calculated inflation bias, but he considered just monetary policy and he did not pay attention to the institutions. Therefore, we design a model which considers the discretion in monetary and fiscal policie...
متن کاملEstimating Variance of the Sample Mean in Two-phase Sampling with Unit Non-response Effect
In sample surveys, we always deal with two types of errors: Sampling error and non-sampling error. One of the most common non-sampling errors is nonresponse. This error happens when some sample units are not observed or viewed but they do not answer some of the questions. The complete prevention of this error is not possible, but it can be significantly reduced. The non-response causes bias and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014